About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 13, No. 1, February 2013, Pages 287-300 PDF(3.34 MB)  
doi: 10.4209/aaqr.2012.01.0004   

Monthly and Seasonal Variations in Aerosol Associated n-alkane Profiles in Relation to Meteorological Parameters in New Delhi, India

Shweta Yadav, Ankit Tandon, Arun K. Attri

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi – 110067, India

 

Abstract

 

A one-year extensive investigation to assess monthly and seasonal variations in the PM10 associated homologous series of n-alkane (C11–C35) profiles was carried out in New Delhi, India. Quantitative estimation of n-alkanes, involving 3–4 PM10 samples/month, was done by using thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Significant seasonal variations were observed, both in mass concentrations (annual mean: 517 ± 256 ng/m3) and mass fractions (annual mean: 4368 ± 2067 ppm) of total n-alkanes (C11–C35). The impact of the Planetary Boundary Layer (PBL) on the n-alkane profiles was the most significant among all the meteorological parameters considered. A strong positive correlation (r = 0.84) between PM10 load (μg/m3) and mass concentrations of total n-alkanes (ng/m3) was observed; whereas a negative correlation (r = –0.72) was seen between the PM10 load and mass fractions of total n-alkanes (ppm). Annual mean values of the Carbon Preference Index (CPI) and Wax n-alkanes percentage (WNA%) stood at 2.2 ± 0.6 and 39 ± 10%, respectively. Established diagnostic tools indicated that during autumn, the dominant inputs of aerosol associated n-alkanes came from petrogenic (vehicular and industrial) emissions (72 ± 7%), with lesser contributions from biogenic activities (28 ± 7%). In other seasons, although petrogenic sources remained a dominant contributor (53 ± 6%–59 ± 14%), the contributions from biological sources were also comparable (41 ± 14%–47 ± 6%). Emissions of total n-alkanes from both petrogenic and biogenic sources were maximum during spring. In the rest of the months, small variations were observed in the emissions of total n-alkanes from petrogenic sources, whereas large variations were noted in the emissions from biogenic sources.

 

 

Keywords: Aerosols; n-alkanes; TD-GC-MS; Seasonal variations; Diagnostic parameters.

 

 

Copyright © 2009-2014 AAQR All right reserved.