About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 12, No. 5, October 2012, Pages 961-971 PDF(1.3 MB)  
doi: 10.4209/aaqr.2012.02.0036   

High-Temperature Cleaning for Chlorine-Containing Coal Gas by Supported Manganese Oxide Sorbent

Ting Ke Tseng, Ling Wang, Hsin Chu

Department of Environmental Engineering and Research Center for Energy Technology and Strategy, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan

 

Abstract

 

This research aimed to achieve HCl removal for chlorine-containing hot coal gas by using supported oxide sorbents in a fixed-bed reactor at 673–873 K. Mn2O3/SiO2 was chosen as the optimal sorbent to eliminate chlorine species, after thermodynamic screening of the dechlorination potential of sorbents based upon various metals. The dechlorination experiments and results of the ICP, BET, XRD, XPS, and FTIR analyses provided in-depth views of the reaction chemistry behind the complex system of HCl removal in a simulated syngas containing 3,000 ppm HCl, 25 vol% CO, 15 vol% H2, and N2. When the sorbent composed of 23 wt% Mn2O3/SiO2 came into contact with HCl, CO, and H2, the reaction mechanism contained two paths. At lower temperatures Mn2O3 tended to react with HCl, while at higher temperatures it might first be reduced into Mn3O4 and then react with HCl. The probable products from the reaction (Mn2O3 and HCl or Mn3O4 and HCl) are MnCl2, Cl2, and H2O. That is, as the reaction temperature increased, the second path started to become more important. The final product of this reaction might also include metallic manganese in addition to MnCl2. Furthermore, when the temperature increased, the equilibrium constants of all the reactions reduced, and subsequently resulted in the decreasing sorbent performance.

 

 

Keywords: HCl removal; Fixed-bed reactor; Mn2O3; IGCC.

 

 

Copyright © 2009-2014 AAQR All right reserved.