About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal


Contact Us
Search for  in   Search  Advanced search  


Volume 12, No. 2, April 2012, Pages 145-160 PDF(11.57 MB)  
doi: 10.4209/aaqr.2011.11.0187   

An Efficient Multipollutant System for Measuring Real-World Emissions from Stationary and Mobile Sources

Xiaoliang Wang, John G. Watson, Judith C. Chow, Steven Gronstal, Steven D. Kohl

Division of Atmospheric Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, U.S.A.




A portable dilution sampling and measurement system was developed for measuring multipollutant emissions from stationary and mobile sources under real-world operating conditions. This system draws a sample of exhaust gas from the source, dilutes it with filtered air and quantifies total volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), oxygen (O2), particle size distribution, particle number and mass concentrations, and black carbon (BC) concentration at 1–6 sec interval. Integrated samples by canisters and filter packs are acquired for laboratory analyses of VOC speciation, particle mass concentration, light absorption, elements, isotopes, ions, ammonia (NH3), hydrogen sulfide (H2S), sulfur dioxide (SO2), carbon, and organic compounds. Experiments were carried out to evaluate this system. The accuracy of key real-time instruments were found to deviate < ± 12% from references. CO2 was used as the tracer gas to verify the concentration uniformity in the three measurement modules and relative concentration difference was < 5.1%. Instrument response time was tested by emissions from lighting and burning matches. The DustTrak DRX and optical particle counter (OPC) had the fastest response time, while other instruments had 3.5–21.5 sec delay from the DustTrak DRX and OPC. This system was applied to measure emissions from burning pine logs in a wood stove. The real-time data showed flaming, transition, and smoldering phases, and allowed real-time emission ratios to be calculated. Combing real-time data and laboratory analysis, this measurement system allows the development of multipollutant emission factors and source profiles.



Keywords: PM2.5; Emission factor; Source profile; Biomass burning; Source characterization.



Copyright © 2009-2014 AAQR All right reserved.