About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal


Contact Us
Search for  in   Search  Advanced search  


Volume 7, No. 2, June 2007, Pages 121-173 PDF(330 KB)  
doi: 10.4209/aaqr.2007.05.0029   

Review of Measurement Methods and Compositions for Ultrafine Particles

Judith C. Chow, John G. Watson

Desert Research Institute, 2215 Raggio Parkway, Reno, NV, 89512 USA.




Impactor, virtual impactor/aerosol concentrator, and aerodynamic lenses are used to separate the ultrafine particle (UP) fraction from other particle sizes for chemical analysis. Cascade impactors, such as the Micro-Orifice Uniform Deposit Impactor (MOUDI), are most commonly used in field studies, with sampling onto substrates amenable to different chemical analyses. Impactors need sufficient sampling flow rates and homogeneous deposits on the impaction surfaces for multiple chemical analyses. Mass, elements, ions, and carbon fractions can be measured on these substrates by several analytical methods. Specific organic compounds measured by solvent extraction require substantial mass loadings that can only be obtained by compositing samples from several measurement periods unless aerosol concentrators or high-volume sampling devices are used. Thermal desorption-gas chromatographic/mass spectrometry has potential to obtain organic speciation with small sample sizes. Studies of UP composition began in the late 1990s, with 25 ambient studies surveyed here. These are mostly from urban areas. Organic material, including polycyclic aromatic hydrocarbons (PAHs), usually constituted the most abundant portion of UP, with high elemental concentrations found near industrial sites. Much of the UP < 50 nm appears to be semi-volatile, consistent with it being composed by organic materials such as hopanes from engine oils or condensed secondary organic aerosol such as organic acids.



Keywords: Ultrafine particles; Chemical composition; Particle size distribution; Carbonaceous aerosol.



Copyright © 2009-2014 AAQR All right reserved.